,l‘l f
1] mazon

¥ web services

FOR GCREATING AMAZON GLOUD
FORMATION TEMPLATES

19 Best Practices for Creating Amazon Cloud Formation Templates Page 2

INTRODUCTION TO AMAZON VPC

Amazon Virtual Private Cloud (Amazon VPC) enables we to launch Amazon Web Services (AWS) resources into a virtual network that we've defined.
Thwas virtual network closely resembles a traditional network that we'd operate in your own datacenter, with the benefits of using the scalable

infrastructure of AWS.

19 BEST PRACTICES

FOR CREATING AMAZON GLOUD FORMATION
TEMPLATES

Amazon CloudFormation templates are widely used in the AWS cloud
for environment creation by the IT and application teams. We have been
helping enterprises with Amazon CFT based automation for years and
following are some of the best practices to follow while creating
Amazon CFT Templates. This article compiles the CFT practices /pointers
used by us for provisioning complex large scale environments on AWS,
not all of them will be applicable for all use cases.

PRACTICE #1:
VERSION YOUR CLOUDFORMATION TEMPLATES

CloudFormation template should be commenced with a template
format version and description such that it could be artifact-able with
version control tools like Git, SVN, CVS, etc,,
Example:
"AWSTemplateFormatVersion": "2010-09-09",

"Description": "AWS CloudFormation Template for CustomerXYZ Version
50"

PRACTICE #2:
USE INPUT PARAMETERS

Input parameters section should be developed in scope with getting
values from the end users of the CFT for environments, SSH Key Pairs,
EC2 instance types, RDS instance types, ElastiCache node types, etc.,
and this makes the entire CloudFormation template configurable and
maintainable.

Example:
"WebTierkKeyName": {

"Description”: "Name of an existing EC2 KeyPair to enable SSH
access to the WebTier",

"Type": "String",

"MinLength":"1",

"MaxLength": "64",

"Default": "testkey",

"AllowedPattern": "[-_ a-zA-Z0-9]*",

"ConstraintDescription™: "can contain only alphanumeric characters,
spaces, dashes and underscores."

PRACTICE #3:
AMI D SHOULD BE A PARAMETER IN INPUTS
SECTION

AMI ID should be asked as an input parameter from the end users for
launching EC2 instances. It is highly recommended not to hard code it
inside your template and make it configurable dynamically.

Example:
"NatAMIID": {
"Type": "String",
"Default™: "ami-XXXXXXXX",
"Description”: "The AMIID of NAT Instance”

3

PRACTICE #4:
MENTION THE AMI MAPPINGS

AMI Mappings should be included in the CloudFormation template to
validate the respective AMI(s) in the region(s) specified else it will take
default AMI for the region (which is not advisable).
Example:
"Mappings": {
"RegionMap": {
"us-east-1"{
"AMI": "ami-XXXXXXXX"
I3
"us-west-2": {
"AMI": "ami-XXXXXXXX"
13

PRACTICE #5:
USE WAITCONDITIONHANDLE, WAITCONDITION,
DEPENDSON WHEREVER APPLICABLE

When creating a large multi-tiered infrastructure using CFT on AWS,
there are times when the order of the resource launch is important. For
Example WaitCondition that waits for the desired number of instances
in a web server group.

Using the AWS::CloudFormation:WaitCondition and
AWS::CloudFormation:WaitConditionHandle resources, a wait
condition can be placed with in a template to make AWS
CloudFormation pause the creation of the stack and wait for a signal
before it continues to create the stack.

We can specify that the creation of a specific resource to follow
another using the “DependsOn” attribute. On adding a DependsOn
attribute to a resource, it is created only after the creation of the
resource specified in the DependsOn attribute.

Example:
"WebServerGroup" : {
"Type": "AWS::AutoScaling:AutoScalingGroup",
"Properties" : {
"AvailabilityZones" : { "Fn:GetAZs": "},
"LaunchConfigurationName": { "Ref" : "LaunchConfig" },
"MinSize": "1",
"MaxSize":"5",
"DesiredCapacity" : { "Ref" : "WebServerCapacity" },
"LoadBalancerNames": [{ "Ref" : "ElasticLoadBalancer" }]
}
2
"WaitHandle" : {
"Type" : "AWS::CloudFormation:WaitConditionHandle"
2
"WaitCondition" : {
"Type": "AWS:CloudFormation:WaitCondition",
"DependsOn": "WebServerGroup",
"Properties" : {
"Handle" :{ "Ref": "WaitHandle"},
"Timeout": "300",
"Count" :{"Ref":"WebServerCapacity" }
}
}

For example, an Amazon EC2 instance with a public IP address is
dependent on the VPC-gateway attachment if the VPC and Internet
Gateway resources are also declared in the same template. The
following snippet shows a sample gateway attachment and an Amazon
EC2 instance that depends on that gateway attachment:

"GatewayTolnternet": {
"Type": "AWS:EC2:VPCGatewayAttachment”,
"Properties" : {
"Vpcld": { "Ref": "VPC"},
"InternetGatewayld" : { "Ref" : "InternetGateway" }
}
3
"EC2Host" : {
"Type": "AWS:EC2:Instance”,
"DependsOn": "GatewayTolnternet”,
"Properties" : {
"InstanceType": { "Ref" : "EC2InstanceType" },
"KeyName" :{ "Ref": "KeyName"},
"Imageld" : {"Fn:zFindInMap" : ["AWSRegionArch2AMI", { "Ref" :
"AWS::Region"},
{"FnzFindInMap" : ["AWSInstanceType2Arch", { "Ref" : "EC2Instance-
Type"}, "Arch" 111},
"Networkinterfaces" : [{

"GroupSet" - [{ "Ref" : "EC2SecurityGroup" }],
"AssociatePubliclpAddress" : "true”,
"Devicelndex" :"0",
"DeleteOnTermination" : "true",
"Subnetld" :{"Ref": "PublicSubnet" }
1
}

}

PRACTICE #6:
TAG THE RESOURCES PROPERLY

Tags should be used for the creation of AWS resources. Tags can be
environment, purpose, application specification etc., In addition to the
stack name tags that AWS CloudFormation provides, custom tags can
be added to the resources that support tagging. This helps in easy
grouping of the assets associated with the environment.

Example:
"Tags": [
{
"Key": "Environment",
"Value": {
"Ref": "Environment"
}
I3
{

"Key": "Purpose”,
"Value": "CustomerXYZ VPC"

PRACTICE #7:
UNDERSTAND YOUR RESOURCES

When a CloudFormation template is deleted all AWS resources
assigned with the template will be automatically deleted by AWS. For
example a VPC template will have all the related resources like Route
tables, Subnets, Network ACLs, etc., will be deleted.

In real scenario, S3 buckets logs, EBS snapshots etc are associated with
an infrastructure but they will not terminated when the CFT is deleted,
hence have to be automated for deletion using scripts.

19 Best Practices for Creating Amazon Cloud Formation Templates Page 3

PRACTICE #8:
CREATE YOUR SECURITY GROUPS USING CFT

Security Groups can be governed and controlled using CloudFormation

template for various tiers like Web, App, DB, etc.,

"GatewayTierSg": {
"Type": "AWS:EC2::SecurityGroup",
"Properties": {
"GroupDescription": "Gateway Security Group",
"Vpcld": {
"Ref": "Vpc"
17
"SecurityGrouplngress": [
{
"lpProtocol": "6",
"FromPort": "22",
"ToPort": "22",
"Cidrlp": "0.0.0.0/0"
}
1
"SecurityGroupEgress": [
{
"IpProtocol": "-1",
"Cidrlp": "10.0.0.0/16"
}
]
}
L

PRACTICE #9:
CREATE YOUR SECURITY GROUPS USING CFT

Output section should be declared with AWS specific end points to
trace back. The template Outputs section enables in returning one or
more values to the user in response to the AWS CloudFormation
describe-stacks command. Example your endpoints are shown on the
Output section.

Example:
"RDSDatabaseEndpointDetail": {
"Description": "RDSDatabaseEndpointDetails",
"Value": {
"Fn:GetAtt": [
"RdsTierService",
"Endpoint.Address"
]
}
L
"ElastiCacheEndpointDetail": {
"Description™: "ElastiCacheEndpointDetails",
"Value": {
"Fni:GetAtt": [
"ElatiCacheTierService",
"ConfigurationEndpoint. Address"
]
}
13
"WebTierklbExternalEndpointDetail": {
"Description™: "WebTierElb External Endpoint Access Details",
"Value": {
"Fn:GetAtt": [
"WebTierElbExternal”,
"DNSName"

PRACTICE #10:
AUTOMATE APPLICATION INSTALLATION USING
CLOUD-INIT

With the help of cloud-init the installation of various packages can be
done during the boot itself just by passing the appropriate commands.
In the cloud-init the scripts also can be passed through the automation
of various operations can be done.
"Resources" : {
"Ec2Instance": {
"Type": "AWS:EC2:Instance”,
"Properties" : {
"KeyName": { "Ref" : "KeyName"},
"SecurityGroups" : [{ "Ref" : "InstanceSecurityGroup" }],
"Imageld": { "Fn:FindInMap" : ["RegionMap", { "Ref" : "AWS::Region" },
"AMI" 1},
"UserData" : { "Fn:Base64" : { "Fn:Join" : [""[
"#1/bin/bash -ex","\n",
"yum -y install gcc-c++ make","\n",
"yum -y install mysql-devel sglite-devel","\n",
"yum -y install ruby-rdoc rubygems ruby-mysgl ruby-devel","\n",
"gem install --no-ri --no-rdoc rails","\n",
"gem install --no-ri --no-rdoc mysql","\n",
"gem install --no-ri --no-rdoc sqlite3","\n",
"rails new myapp","\n",
"cd myapp","\n",
"rails server -d","\n",
"curl -X PUT -H 'Content-Type:' --data-binary '{\"Status\" : \"SUC-
CESS\')",
"\"Reason\" :\'The application myapp is

ready\",",
"\"Uniqueld\" :\"myapp\",",
"\"Data\":\"Done\'}' ",
"\"", {"Ref" : "WaitForlnstanceWaitHandle"},"\"\n" 1I}}
}

PRACTICE #11:
E%E HELPER SCRIPTS T0 START/STOP SERVICES

AWS CloudFormation provides a set of Python helper scripts that you
can use to install software and start services on an Amazon EC2
instance that you create as part of your stack. You can call the helper
scripts directly from your template. The scripts work in conjunction
with resource metadata that you define in the same template. The
helper scripts run on the Amazon EC2 instance as part of the stack
creation process.

"Resources" : {

"WebServer": {

"Type": "AWS:EC2:Instance”,

"Metadata" : {

"Comment1": "Configure the bootstrap helpers to install the Apache Web
Server and PHP",

"Comment2" : "The website content is downloaded from the CloudForma-

tionPHPSample.zip file",

"AWS:CloudFormation:Init": {
"config": {

"packages": {

"yum" :{

"mysql":],

"mysql-server": [],
"mysql-libs" :],

19 Best Practices for Creating Amazon Cloud Formation Templates Page 4

"httpd": [J,
"php": 11,
"php-mysql": [J
}

2

"sources": {

"/var/www/html" : "https://s3.amazonaws.com/cloudformation-exam-
ples/CloudFormationPHPSample.zip"

2

"files" : {

"/tmp/setup.mysql”: {

"content” : { "Fn:Join": [, [

"CREATE DATABASE ", { "Ref" : "DBName" }, "\n",

"GRANT ALL ON ", { "Ref": "DBName"},"* TO ", { "Ref" : "DBUsername"},
"@localhost IDENTIFIED BY ", { "Ref" : "DBPassword" }, ";\n"

i3

"mode" : "000644",

L

"owner" : "root",
"group": "root"

}
L

PRACTICE #12:
MAKE USE OF PARAMETER SECTION
CONSTRAINTS (WHEREVER APPLICABLE)

The parameter sections provide lot of constraints like MinValue, Max
Value, Allowed values, Max length, etc. By effective usage of the of the
parameter section you can validate the input parameters from the user.
Example: We can restrict TCP port value to be between 1 to 65535, we
can restrict the webserver port to 80,8888 etc. This feature is
particularly useful when you are developing complex cloudformation
template for automation.

"Parameters" : {
"UserAccount": {
"Default": "guest”,
"NoEcho": "true",
"Description” : "The guest account user name",
"Type": "String",
"MinLength": "1",
"MaxLength":"16",
"AllowedPattern": "[a-zA-Z][a-zA-Z0-9]*"
}
}
"Parameters" : {
"WebServerPort": {
"Default": "80",
"Description" : "TCP/IP port for the web server”,
"Type": "Number",
"MinValue": "1",
"MaxValue": "65535"
}
}
"Parameters" : {
"WebServerPort": {
"Default": "80",
"Description”: "Port for the web server",
"Type": "Number",
"AllowedValues" : ['80", "8888"]

PRACTICE #13:
USE NOECHO PROPERTY FOR SENSITIVE
INFORMATION

When the cloudformation is in progress we can use describe-stacks to
check the progress of the stack, in this case we can see the parameters
values being returned. If we use the NoEcho Property like below, the
sensitive information will not be returned.
"AdminPassword": {

"NoEcho": "true",

"Description”: "The Joomlal admin account password",

"Type": "String",

"MinLength": "1",

"MaxLength":"41",

"AllowedPattern” : "[a-zA-Z0-9]*",

"ConstraintDescription” : "must contain only alphanumeric characters."

}

PRACTICE #14:
USE SELECT FUNCTION AND REDUCE THE
PARAMETERS IN THE TEMPLATE

Fn::Select intrinsic function:Using the above function in the in the
Resources section of your template will help you to combine related
parameters which can reduce the total number of parameters in your
template.
"Parameters" : {
"DbSubnetBlocks": {
"Description": "Three CIDR blocks",
"Type": "CommaDelimitedList",
"Default": "10.0.58.0/24, 10.0.59.0/24, 10.0.60.0/24"
}
}
To specify one of the three CIDR blocks, use Fn:Select in the Resources
section of the same template, as shown in the following sample snippet:
"Subnet1":{
"Type": "AWS::EC2:Subnet",
"Properties”: {
"Vpcld": { "Ref": "VPC" },
"CidrBlock": { "Fn:Select": ["0", {"Ref": "DbSubnetBlocks"}] }
}
}

PRACTICE #15:
USE INTRINSIC FUNCTIONS TO MANAGE
AUTOMATION

Fn::FindInMap intrinsic function

The function Fn::FindinMap returns the value corresponding to keys in
a two-level map that is declared in the Mappingssection.

{

"Mappings": {
"RegionMap": {
"us-east-1":{"32": "ami-6451e20d", "64" : "ami-7a11e213"},
"us-west-1":{"32": "ami-d5gc7978c", "64" : "ami-cfc7978a" }
}

"Resources”: {
"myEC2Instance” : {
"Type": "AWS:EC2:Instance”,
"Properties” : {
"Imageld" : { "Fn:FindInMap" : ["RegionMap", { "Ref" : "AWS:Region" },

19 Best Practices for Creating Amazon Cloud Formation Templates Page 5

32",
"InstanceType" : "
}
}

}
}
You can use intrinsic functions, such as Fn:lf, Fn:Equals, and Fn:Not, to
conditionally create stack resources. These conditions are evaluated
based on input parameters that you declare when you create or
update a stack. After you define all your conditions, you can associate
them with resources or resource properties in the Resources and
Outputs sections of a template

PRACTICE #16:
PROPERTIES SECTION

If a resource does not require any properties to be declared, you can
omit the Properties section of that resource. This will keep the template
code simple and manageable

m3.large"

"Resources": {
"Weblnstance": {
"Type": "AWS:EC2:Instance”,
"Properties" : {
"UserData": {
"Fn:Base64" : {
"FnzJoin" [, ["Queue=", { "Ref": "MyQueue"}1]
1}
"Imageld" : "ami-20b65349"

"MyQueue": {
"Type": "AWS:SQS::Queue”,
"Properties”: {
}
}
}

PRACTICE #17:
PLANNING WINDOWS BOOTSTRAPPING USING
AMAZON CFT

In order for the Windows bootstrapping to work the CloudFormation
the windows instance should be setup with the EC2ConfigService. The
AWS CloudFormation helper script cfn-init is used to perform each of
these actions, based on information in the AWS::CloudFormation:Init
resource.
"SharePointFoundation": {

"Type": "AWS:EC2:Instance”,

"Metadata" : {

"AWS:CloudFormation:Init": {
"config": {

"files" : {
"c\\cfn\\cfn-hup.conf" : {
"content” : { "Fn:Join": [, [
"[main]\n",
"stack=", { "Ref": "AWS:StackName" }, "\n",
"region=", { "Ref" : "AWS:Region"}, "\n"
il
I3
"c\\cfn\\hooks.d\\cfn-auto-reloader.conf" : {
"content":{ "Fn:Join": ["", [
"[cfn-auto-reloader-hook]\n",
"triggers=post.update\n",

"path=Resources.SharePointFoundation.Metadata. AWS::CloudForma-
tionzInit\n",
"action=cfn-init.exe -v-s ", { "Ref" : "AWS:StackName" },
" -r SharePointFoundation",
" —-region ", { "Ref" : "AWS:Region" }, "\n"
1
L
"C\\SharePoint\\SharePointFoundation2010.exe" : {
"source": "http://d3adzpjad2utk0.cloudfront.net/SharePointFounda-
tion.exe"
}
L

PRACTICE #18:
USE NESTED STACKS

You can declare only Maximum of 200 resources in your AWS
CloudFormation template. For complex environments and automation
stacks you will need more than that, it is recommended to separate
your template into multiple templates using the nested stacks feature.
{

"AWSTemplateFormatVersion" : "2010-09-09",

"Resources": {

"myStack": {

19 Best Practices for Creating Amazon Cloud Formation Templates Page 6

"Type": "AWS:CloudFormation::Stack”,
"Properties" : {
"TemplateURL" : "https://s3.amazonaws.com/cloudforma-
tion-templates-us-east-1/S3_Bucket.template”,
"TimeoutinMinutes" : "60"
}
}
L
"Outputs": {
"StackRef": {"Value": { "Ref" : "myStack"}},
"OutputFromNestedStack" : {
"Value": { "Fn:GetAtt" : ["myStack”, "Outputs.BucketName"] }
}
}
}

PRACTICE #19:
INTEGRATE AMAZON CFT WITH AMAZON
CLOUDTRAIL

It is recommended that AWS CloudFormation is integrated with the
CloudTrail. The actions related to CloudFormation like CreateStack,
DeleteStack, and ListStacks actions generate entries in CloudTrail log
files. These logs can be processed for audit compliance purpose later.

San Ramon, CA (HQ) Chicago, IL
12647 Alcosta Boulevard, 1827 Walden Office Square
Suite 450,San Ramon, CA 94583, USA Suite #460

www.securekloud.com
info@securekloud.com
Direct : 925-270-4800
Toll-Free : 855-856-4537

Chennai, India

Srinivasa Towers

New No.5, Old No. 11,
Cenotaph Road,
Alwarpet,Chennai — 600 018
Phone : +91-44-6602-8000
Fax :+91-44-4300-9049

Schaumburg, IL 60173
Phone : 708-289-5111

Ontario, Canada

4 Robert Speck Parkway,
Suite 1500,

Mississauga, Ontario L4Z 1S1
Phone : 416-366-7762

Dallas, TX

17740 Preston Road
Suite #200

Dallas, TX -75252
Phone : 214-272-2404

Sharjah, UAE

Q1-05-109/C
SAIF Zone

PO Box 121213
Sharjah-UAE

